Testing CERES-Maize versions to estimate maize production in a cool environment

Federico Sau, Francisco Javier López Cedrón & Kenneth J. Boote

U. Santiago de C. (Spain) & U. Florida
Introduction

- CERES-Maize is a simple deterministic crop model

- World wide used since its release in 1986 (Kiniry & Jones)
Introduction

Under non-limiting growing conditions the outputs depend on:

• SR, Tmax, Tmin, and to a lesser extent photoperiod

• Cultivar specific factors (5 genetic coefficients)

• Management practices (sowing date, plant density)
Introduction

Applications:

• Test theoretical consequences of varying management practices or cultivars characteristics

• Decision support
Introduction

- The multiple calibration, validation and adaptation processes have led to numerous different versions, differing slightly from the original model and not always well described in the literature.

- Due to its simplicity, this phenomenon is especially sensible in CERES-Maize
• In addition to these unofficial versions: CERES-maize has been modified and supposedly improved by model developers: Kiniry, Ritchie and successors.
Introduction

We highlight three of these recent versions:

- CERES-3.5 (included in DSSAT 3.5)
- CERES-4.0 (included in DSSAT 4.0)

Not extensively tested under cool environment
Introduction

RUE driven model

\[\text{PCARB} = \text{RUE} \times \frac{\text{IPAR}}{\text{PLTPOP}} \quad [1] \]

\[\text{IPAR} = \text{PAR} \times [1 - \exp(-\text{EXT} \times \text{LAI})] \quad [2] \]

\[\text{CARBO} = \text{PCARB} \times \min(\text{PRFT}, 1) \quad [3] \]
Introduction

The model establishes the number of kernels per plant (GPP):

• as a function of average daily biomass growth rate between silking and beginning grain filling.
Finally, the model computes daily reproductive growth:

If insufficient assimilates are available (DM can be remobilized from stems)

$$\text{RGROWTH} = \text{GPP} \times G3 \times \text{RGFILL} \quad [4]$$

G3: potential kernel growth (opt. environment)
RGFIL: temperature function (0-1)
Introduction

Main differences between CERES-Maize versions

1. PFRT

- CERES-2003 and CERES-3.5 share the same

- PRFT of CERES-4.0 is different
Daily average temperature (ºC)

PRFT

CERES-4.0
CERES-2003 & CERES-3.5

Daily average most common temperature rank

PRFT
Introduction

Main differences between CERES-Maize versions

2. RGFILL

- CERES-2003 and CERES-3.5 share the same RGFILL
- RGFILL of CERES-4.0 is different
Daily average temperature most common rank

CERES-4.0
CERES-2003 & CERES-3.5

Daily average temperature (°C)

RGFILL
Main differences between CERES-Maize versions

3. RUE

• In CERES-4.0 and CERES-3.5, RUE = 4.2 g MJ(PAR)$^{-1}$

• In CERES-2003, RUE is VPD dependent:

 IF VPD<1 kPa, RUE = 4.33 g MJ(PAR)$^{-1}$ \[5\]
 IF VPD\geq1 kPa, RUE = 5.05-0.72 VPD g MJ(PAR)$^{-1}$ \[6\]
Introduction

Main differences between CERES-Maize versions

4. Extinction coefficient (EXT)

- In CERES-4.0 and CERES-3.5,
 \[EXT = f(\text{Pl. density and row spacing}) \]

- In CERES-2003,
 \[EXT = 0.65 \]
Main differences between CERES-Maize versions

5. Efficiency of conversion of mobilized vegetative dry matter to grain

The model starts mobilizing dry matter to grain when daily biomass production per plant (CARBO) is smaller than grain growth (GROGRN)

• In CERES-4.0 and CERES-3.5, 1.0 g of stem loss allows an increase of 1.0 g of grain weight

• In CERES-2003, 1.0 g of stem loss = 0.36 g increase in grain weight.
Introduction

Main differences between CERES-Maize versions

6. Grains per plant (GPP) and LAI computation

• In CERES-4.0 and CERES-3.5: identical equations

• In CERES-2003: slightly different eqs.
Objectives

- Evaluate the performance of 3 recent versions of CERES-maize:

 1. CERES-2003 (the most recent v. proposed by J.R. Kiniry)
 2. CERES-3.5 (DSSAT3.5)
 3. CERES4.0 (DSSAT4.0)

- Predictions were compared to growth and yield data from field exps. (1998 - 2002; northwest Spain) with one short season cultivar grown at different sowing dates, under a cool environment, water and nutrients are fully available.
1. Experiments

Soil: sandy-loam texture

Ph = 5.6

ample amounts of N, P, K fertilizers

Management: drip irrigation to avoid any water limitations
(tensiometers monitoring)
<table>
<thead>
<tr>
<th>Treatments</th>
<th>Sow. Date</th>
<th>Pl. density (pl. m(^{-2}))</th>
<th>Total N (kg N ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-1(^{st})</td>
<td>May 14</td>
<td>9.8</td>
<td>320</td>
</tr>
<tr>
<td>1988-2nd</td>
<td>June 4</td>
<td>10.0</td>
<td>320</td>
</tr>
<tr>
<td>1999-1st</td>
<td>May 24</td>
<td>9.9</td>
<td>345</td>
</tr>
<tr>
<td>1999-2nd</td>
<td>June 7</td>
<td>10.0</td>
<td>390</td>
</tr>
<tr>
<td>2000-1st</td>
<td>May 18</td>
<td>9.7</td>
<td>345</td>
</tr>
<tr>
<td>2000-2nd</td>
<td>June 8</td>
<td>9.7</td>
<td>390</td>
</tr>
<tr>
<td>2001</td>
<td>May 19</td>
<td>9.8</td>
<td>345</td>
</tr>
<tr>
<td>2002</td>
<td>May 8</td>
<td>8.6</td>
<td>345</td>
</tr>
</tbody>
</table>
2. Dry matter sampling

- Samples of 0.5 m² at 15-day intervals
- Separated into leaf blades, stem and grain (oven dried at 70°C)
- Specific leaf area (SLA) was evaluated, in order to estimate LAI
- Crop phenology was observed three times per week (growth staging described by Kiniry and Jones (1986).
- At final harvest, 6 m² were hand harvested: yield and yield components determined
Materials and Methods

3. Determination of the genetic coefficients of cv. Clarica

- A low density (4.8 pl. m\(^{-2}\)) sowing was established in 1999 (1\(^{st}\) sow. Date 1999)

- Temperature is supposed to be above 20ºC

- Method proposed by Ritchie et al. (1986) to establish experimentally G2 & G3

- G2: Potential kernel number per plant

- G3: Potential kernel growth rate (mg seed\(^{-1}\) d\(^{-1}\))
Materials and Methods

4. Model runs

• Water balance switched on (Priestley Taylor option)

• Nitrogen balance switched off
Materials and Methods

5. Statistical and graphical procedure to evaluate the different model versions

- intercept (a) and slope (b) values of linear regression between predicted and observed values (biomass, grain weight, LAI)

- root mean square error of these variables (RMSE)

- an index of agreement (d; Wilmott, 1982)

- predicted time series graphs of biomass, grain, and LAI were also compared visually, with measurements
1. Phenology prediction

- P2 (sensitivity to photoperiod) was set to zero
- The others genetic coefficients were established as described in Mat. & Meth.

\[P1 = 175 \text{ GDD (from seedling emergence to the end of juvenile phase)} \]
\[P5 = 630 \text{ GDD (from 75\% silking to physiological maturity)} \]
\[G2 = 936 \text{ (potential kernel number per plant)} \]
\[G3 = 8.0 \text{ (mg seed}^{-1} \text{ d}^{-1}) \]
Results and Discussion

With this genetic coefficients all three models were able to simulate correctly phenology:

- Max RMSE for emergence: 2.6
- Max RMSE for 75% silking: 3.2

The accuracy of models for phenology prediction can be considered equivalent.
TIME SERIES STATISTICS

<table>
<thead>
<tr>
<th>Model</th>
<th>Variable</th>
<th>a</th>
<th>b</th>
<th>RMSE</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERES-4.0</td>
<td>Biom.</td>
<td>-3.9</td>
<td>0.902</td>
<td>2202</td>
<td>0.982</td>
</tr>
<tr>
<td>CERES-3.5</td>
<td>Biom.</td>
<td>312.0</td>
<td>0.828</td>
<td>2729</td>
<td>0.970</td>
</tr>
<tr>
<td>CERES-2003</td>
<td>Biom</td>
<td>297.8</td>
<td>0.740</td>
<td>3909</td>
<td>0.935</td>
</tr>
<tr>
<td>CERES-4.0</td>
<td>Grain</td>
<td>-253.0</td>
<td>1.055</td>
<td>1315</td>
<td>0.980</td>
</tr>
<tr>
<td>CERES-3.5</td>
<td>Grain</td>
<td>-134.0</td>
<td>0.825</td>
<td>1785</td>
<td>0.954</td>
</tr>
<tr>
<td>CERES-2003</td>
<td>Grain</td>
<td>40.0</td>
<td>0.730</td>
<td>2194</td>
<td>0.924</td>
</tr>
<tr>
<td>CERES-4.0</td>
<td>LAI</td>
<td>0.29</td>
<td>0.694</td>
<td>1.211</td>
<td>0.875</td>
</tr>
<tr>
<td>CERES-3.5</td>
<td>LAI</td>
<td>0.25</td>
<td>0.672</td>
<td>1.328</td>
<td>0.852</td>
</tr>
<tr>
<td>CERES-2003</td>
<td>LAI</td>
<td>0.08</td>
<td>0.542</td>
<td>1996</td>
<td>0.720</td>
</tr>
<tr>
<td>Model</td>
<td>Variable</td>
<td>Simulated</td>
<td>RMSE</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>CERES-4.0</td>
<td>Biom. (kg ha$^{-1}$)</td>
<td>22584</td>
<td>1974</td>
<td>0.637</td>
<td></td>
</tr>
<tr>
<td>CERES-3.5</td>
<td>Biom. (kg ha$^{-1}$)</td>
<td>20107</td>
<td>2527</td>
<td>0.600</td>
<td></td>
</tr>
<tr>
<td>CERES-2003</td>
<td>Biom (kg ha$^{-1}$)</td>
<td>17732</td>
<td>4863</td>
<td>0.360</td>
<td></td>
</tr>
<tr>
<td>Measured</td>
<td>Biom (kg ha$^{-1}$)</td>
<td>22185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERES-4.0</td>
<td>Grain (kg ha$^{-1}$)</td>
<td>12137</td>
<td>1472</td>
<td>0.611</td>
<td></td>
</tr>
<tr>
<td>CERES-3.5</td>
<td>Grain (kg ha$^{-1}$)</td>
<td>9527</td>
<td>1954</td>
<td>0.474</td>
<td></td>
</tr>
<tr>
<td>CERES-2003</td>
<td>Grain (kg ha$^{-1}$)</td>
<td>8410</td>
<td>2942</td>
<td>0.393</td>
<td></td>
</tr>
<tr>
<td>Measured</td>
<td>Grain (kg ha$^{-1}$)</td>
<td>11148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERES-4.0</td>
<td>LAI</td>
<td>4.5</td>
<td>0.93</td>
<td>0.541</td>
<td></td>
</tr>
<tr>
<td>CERES-3.5</td>
<td>LAI</td>
<td>4.3</td>
<td>1.04</td>
<td>0.583</td>
<td></td>
</tr>
<tr>
<td>CERES-2003</td>
<td>LAI</td>
<td>3.5</td>
<td>1.86</td>
<td>0.418</td>
<td></td>
</tr>
<tr>
<td>Measured</td>
<td>LAI</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results and Discussion

• Temperature during the growing season is relatively cool: $T_{avg.} = 16.5-18 ^\circ C$

From “emergence to anthesis”: $T_{avg.} = 16.1-18.9 ^\circ C$

During “grain filling”: $T_{avg.} = 15.2-19.1 ^\circ C$
Daily average most common temperature rank

- CERES-2003 & CERES-3.5
- CERES-4.0

PRFT vs. Daily average temperature (°C)
Daily average temperature (°C)

RGFILL

CERES-2003 & CERES-3.5
CERES-4.0

Daily average temperature most common rank
Results and Discussion

• If we insert CERES-4.0 PRFT function in the CERES-3.5 code, that accounts for 41 and 20% of the difference in biomass and grain yield, respectively, caused by V4.0.

• If we insert CERES-4.0 RGFILL function in the CERES-3.5 code: that accounts for 44 and 68% of the difference in biomass and grain yield, respectively, caused by V4.0.

• If we insert CERES-4.0 both PRFT & RGFILL functions in the CERES-3.5 code: that accounts for 92 and 100% of the difference in biomass and grain yield, respectively, caused by V4.0.

• This confirms that the difference between the two versions is almost exclusively PRFT & RGFILL.
Results and Discussion

• If we insert in CERES-2003, the translocation function of CERES-3.5 and CERES-4.0: biomass and grain yield predicted increases 12 & 18%, respectively, and the unexpected bumps in the growth curves disappear.

• If we insert in CERES-2003, the LAI functions of CERES-3.5 and CERES-4.0: biomass and grain yield predicted increases 5 & 9%, respectively.

• RUE change (to a fixed RUE independent from VPD) causes a tiny increase in predictions, while EXT change (from 0.65 to 0.59) generates a slight decrease in predictions.
Conclusions

- CERES-4.0 predicts most closely the biomass and grain yield under this cool environment.
- CERES-2003 showed the poorest performance.
- Reasons for CERES-4.0 advantage are related to the new look-up functions for PRFT and RGFILL that create less sensitivity to temperature. Is this correct for all environments.